Midterm 2 Take-Home

Direct proof that \(\bar{X} \) and \(S^2 \) are independent when sampling from the \(N(\mu, \sigma^2) \) distribution.

Let \(X_1, X_2 \) independent \(N(\mu, \sigma^2) \) random variables. (A random sample of size \(n = 2 \).)

1. Show that \(Y_1 = X_1 + X_2 \) and \(Y_2 = X_2 - X_1 \) are independent.

2. What is the distribution of \(Y_1 \)? What is the distribution of \(Y_2 \)?

3. Show that \(W_1 = \frac{1}{2} Y_1 \) and \(W_2 = \frac{1}{2} Y_2 \) are independent.

 Note:
 \[
 W_1 = \frac{1}{2} Y_1 = \frac{1}{2} (X_1 + X_2) = \bar{X}
 \]

 and
 \[
 W_2 = \frac{1}{2} Y_2 = \frac{1}{2} (X_2 - X_1) = \frac{1}{2} X_2 - \frac{1}{2} X_1
 \]

 \[
 = X_2 - \frac{1}{2} X_1 - \frac{1}{2} X_2
 \]

 \[
 = X_2 - \left(\frac{X_1 + X_2}{2} \right) = X_2 - \bar{X}
 \]

 (So \(\bar{X} \) and the \(n - 1 \) deviations from the sample mean are independent.)

4. What is the distribution of \(W_1 \)? What is the distribution of \(W_2 \)?

5. Show that since \(W_1 \) and \(W_2 \) are independent that \(W_3 = X_1 - X \) is also independent of \(W_1 \).

 Note:
 \[
 X_1 - \bar{X} + X_2 - X = 0
 \]

 (So \(\bar{X} \) and the first deviation \(X_1 - \bar{X} \) are also independent.)

6. Argue that \(\bar{X} \) and \(S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \) are independent for a random sample of size \(n = 2 \) from the \(N(\mu, \sigma^2) \) distribution.

7. What is the distribution of \(\bar{X} \)? What is the distribution of \(S^2 \)?

8. Develop the same results for \(n = 3 \).

9. Develop the same result for a sample of size \(n \).