Generating Pseudo-random Numbers

Linear Congruential Pseudo-random Number Generators

Consider the function

\[g(x) = (Cx + D) \mod M \]

where \(C \), \(D \) and \(M \) are constants.

Starting with an initial value \(x_0 \), we generate a sequence of numbers, \(x_0, x_1, x_2, x_3, \ldots \) by letting

\[x_{n+1} = g(x_n) \]

EXAMPLE: Let \(M = 8 \), \(C = 5 \), \(D = 7 \), \(x_0 = 4 \). Then

\[g(x) = (5x + 7) \mod 8 \]

Using this we obtain

\[x_1 = \left[(5)(4) + 7 \right] \mod 8 = 3 \]
\[x_2 = \left[(5)(3) + 7 \right] \mod 8 = 6 \]
\[x_3 = \left[(5)(6) + 7 \right] \mod 8 = 5 \]

Continuing in this way we find \(x_4 = 0 \), \(x_5 = 7 \), \(x_6 = 2 \), \(x_7 = 1 \), \(x_8 = 4 \). At this point the sequence starts over again and repeats the same 8 values over and over.

One thing to note about this example is that each of the values in \(\{0, \ldots, 7\} \) occurs before the sequence begins repeating. To guarantee this, the values of \(M \), \(C \) and \(D \) must be carefully chosen.

A number theory result guarantees that with the conditions listed below, all the numbers in \(\{0, \ldots, (M - 1)\} \) will occur before the sequence repeats.

(i) \(D \) and \(M \) are relatively prime
(ii) \(C - 1 \) is divisible by every prime factor of \(M \)
(iii) If \(M \) is divisible by 4 then so is \(C - 1 \)

Since we would like a long sequence of random numbers we should choose a very large value for \(M \). Also, we would like our number generator to produce values between 0 and 1 (not between 0 and \(M - 1 \)), so we will return the values \(x_1/M, x_2/M, x_3/M, \ldots \). We call such a number generator a Uniform(0,1) random number generator. We will see that all the random behavior we would like to represent in a computer program can be derived from a Uniform(0,1) random number generator.
The Pascal code below implements the method described above. Note that the variable Seed is global and must be initialized at the beginning of the program execution.

```pascal
var Seed : double

function Random : double;
const M = 1048576.0;
    C = 889925.0;
    D = 489459.0;
begin
    Seed := C * Seed + D;
    Seed := Seed - trunc(Seed / M) * M;
    Random := Seed / M;
end;
```

Equivalent code in C is displayed below. Note that the fmod function in `<math.h>` and that you will need to use the `-lm` directive when compiling your code to link the math library.

```c
#define M 1048576.0
#define C 889925.0
#define D 489459.0

double Seed;

double Random (void)
{
    Seed = fmod(C * Seed + D, M);
    return (Seed / M);
}
```

For more information on random number generation see:

- Knuth, Donald, *The Art of Computer Programming*.
- *Numerical Recipes* available at most bookstores.